SCHEME OF COURSE WORK

Department of Computer Science and Engineering

Course Details:

COURSE TITLE	DATA STRUCTURES AND ALGORITHMS LAB				
COURSE CODE	22CT1106 LTPC 0031.5				
PROGRAM	B.TECH				
SPECIALIZATION	CSE				
SEMESTER	III Semester				
PRE-REQUISITES	C PROGRAMMING				
COURSES TO WHICH IT IS A PRE-REQUISITE	ADVANCED DATA STRUCTURES				

Course Outcomes (COs):

CO1	develop programs using recursive functions. (L3)
CO2	implement stacks and queues. (L3)
CO3	develop Programs for searching and sorting techniques. (L3)
CO4	implement different types of trees. (L3)
CO5	apply the concepts of graphs. (L3)

Program Outcomes (POs):

PO 1	Graduates will be able to apply the knowledge of mathematics, science, engineering fundamentals and principles of Computer Science & Engineering to solve complex problems in different domains
00.2	Graduates can identify formulate study contemporary domain literature and analyze real life problems
PO 2	Graduales can identify, formulate, study contemporary domain interature and analyze real me problems
	and make effective conclusions using the basic principles of science and engineering.
PO 3	Graduates will be in a position to design solutions for Engineering problems requiring in-depth
	knowledge of Computer Science and design system components and processes as per standards with
	emphasis on privacy, security, public health and safety.
PO 4	Graduates will be able to conduct experiments, perform analysis and interpret data as per the prevailing
	research methods and to provide valid conclusions.
PO 5	Graduates will be able to select and apply appropriate techniques and use modern software design and
	development tools. They will be able to predict and model complex engineering activities with the
	awareness of the practical limitations.
PO 6	Graduates will be able to carry out their professional practice in Computer Science & Engineering by
	appropriately considering and weighing the issues related to society and culture and the consequent
	responsibilities.
PO 7	Graduates would understand the impact of the professional engineering solutions on environmental
	safety and legal issues
PO 8	Graduates will transform into responsible citizens by adhering to professional ethics.
PO 9	Graduates will be able to function effectively in a large team of multidisciplinary streams consisting of
	persons of diverse cultures without forgetting the significance of each individual's contribution.
PO 10	Graduates will be able to communicate effectively about complex engineering activities with the
	engineering community as well as the general society, and will be able to prepare reports.
PO 11	Graduates will be able to demonstrate knowledge and understanding of the engineering and management
	principles and apply the same while managing projects in multidisciplinary environments.
PO 12	Graduates will engage themselves in self and life-long learning in the context of rapid technological
	changes happening in Computer Science and other domains.
·	

Course Outcomes (CO) versus Program Outcomes (PO)

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3			3	2				1		3	1
CO2	3			2							3	1
CO3	3	2		1							3	1
CO4	3			2							3	1
CO5		3		2	1						3	1

3 - Strongly correlated, 2- Moderately correlated, 1-Poor correlated, Blank - No correlation

Programme Specific Outcomes (PSOs)

PSO1	Identify the working of algorithms and apply the knowledge to solve various specific problems in various domains by using the fundamentals of data structures.
PSO2	Understand the working of time complexities and space complexity of each solution for real time problems.
PSO3	Design the algorithms to model the automation systems for modernizing contemporary societal, Industrial, organizational and public welfare needs with rational insight.

Course Outcomes (CO) versus Programme Specific Outcomes (PSOs)

Course Outcome	PSO1	PSO2	PSO3
C01	3	1	
CO2	3		
CO3	3		
CO4	3		
CO5	3		

3 - Strongly correlated, 2- Moderately correlated, 1-Poor correlated, Blank - No correlation

Assessment Methods	Daily Performance (Record/Observation/Viva): 20 Marks
	Record: 5Marks, Observation: 10Marks, Viva: 5 Marks
	Internal Exam : 40 Marks(Exam+Daily Performance)
	External Exam: 60Marks

Teaching- Learning & Evaluation

Week	Topic/ Contents	Course Outcomes	Sample questions	Teaching learning strategy	Assessment method & schedule			
1	Search Algorithms	C01	 Write a program for searching an element in an array by using binary search 	Lecture, Programming	Record, Observation, Viva,			
			 Write a program to search an element by using fibonacci search 	Demo	Internal Examination- I			
2	Sorting techniques	CO1	 Write a program to sort list of elements by using selection sort Write a program to sort the elements by using bubble and insertion sort 	Lecture, Programming Demo	Record, Observation, Viva, Internal Examination- I			
	Sorting techniques			Lecture,	Record,			
3		CO1	 Write a program to sort the elements by using quick sort Write a program to sort the elements 	Programming	Observation, Viva,			
			by using merge sort	Demo	Internal Examination- I			
	Abstract data types			Lecture,	Record,			
4		CO2	 Write a program that implements the following data structures 	Programming	Observation, Viva,			
			using arrays: i)Stack ii) Queue.	Demo	Internal Examination- I			
	Stack applications and		1. Write a program to	Lecture,	Record,			
5	queues	CO2	applications i)Factorial ii) Infix to	Programming	Observation, Viva,			
			2. Write a program to implement priority queue	Demo	Internal Examination- I			
	Linked lists		1. Write a program to implement	Lecture,	Record,			
6		CO3	the following types of Lists i)Singly linked list ii) Doubly	Programming	Observation, Viva,			
			linked list.	Demo	Internal Examination- I			
7	7 Lab Internal Examination- I							
	Linked lists			Lecture,	Record,			
8		CO3	 Write a program to implement the following types of List 	Programming	Observation, Viva,			
			i) Doubly linked list.	Demo	Internal Examination- II			
	Binary tree traversals - non		1. Write a program to	Lecture,	Record,			
9	innear data structures	CO4	arrays and to perform binary tree using traversals	Programming	Observation, Viva, Internal			
			preorder.	Demo	Examination- II			

10	Binary search tree traversals	CO4	 Write a program to perform the following operations using linked lists: i)Insert an element into a binary search tree. ii)Delete an element from a binary search tree. iii)Search for a key element in a binary search tree. 	Lecture, Programming Demo	Record, Observation, Viva, Internal Examination- II	
11	Graph traversal techniques	CO5	 Write a program for the implementation of BFS and DFS for a given graph 	Lecture, Programming Demo	Record, Observation, Viva, Internal Examination- II	
12	Minimum spanning tree techniques	CO5	 Write a program to implement prim's algorithm Write a program to implement kurskals algorithm 	Lecture, Programming Demo	Record, Observation, Viva, Internal Examination- II	
13	Lab Internal Examination- II					
14	Preparation and End Semester Practical Examination					