

GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING (Autonomous) Approved by AICTE, New Delhi and Affiliated to JNTU-Kakinada

Re-accredited by NAAC with "A" Grade with a CGPA of 3.47/4.00 Madhurawada, Visakhapatnam - 530 048.

DEPARTMENT OF CIVIL ENGINEERING **SCHEME OF COURSE WORK**

Course Details:

Course Title	: Fluid Mechanics
Course Code	: 20CE1105
L T P C	: 3 0 0 3
Program:	: B. Tech.
Specialization:	: Civil Engineering
Semester	: III
Prerequisites	: Applied Mechanics, Calculus and Linear Algebra, Ordinary
	Differential Equation and Vector Calculus.
Courses to which it is a prerequisite	: Hydraulics and Hydraulic Machinery, Water Resources Engineering

COURSE OUTCOMES (COs):

After completion of this course the student would be able to

CO	Course Outcomes	Learning Outcomes
1	Explain various fluid properties and	1. Explain the properties of fluids (L2)
	compute pressures using manometers	2. Explain the concepts of pressure measurement
		(L2)
		3. Estimate the fluid pressure in pipes using
		manometers (L3)
2	Compute the hydrostatic forces on plane	1. Compute the hydro static fluid pressure on
	and curved surfaces and explain the	various surfaces (L3)
	concepts of Kinematics of fluids	2. Explain the concept of fluid kinematics and
		discuss various types of flowing fluids (L2)
		3. Demonstrate applications of continuity
		equations (L2)
3	Apply the fluid dynamic principles to	1. Demonstrate the applications of Bernoulli's
	measure quantities of fluid flowing in	equation (L2)
	pipes, tanks and channels	2. Demonstrate the applications of Momentum
		equation (L2)
		3. Compute the discharge through pipes, tanks and
		channels (L3)
4	Differentiate between turbulent and	1. Demonstrate Laminar, Transition and Turbulent
	laminar fluid flows and also compute head	flows through pipes (L2)
	loss due to pipe friction	2. Explain Laminar flow through parallel plates
		(L2)
		3. Estimate the various energy losses in pipe flow
		(L3)
5	Explain the concepts of boundary layer	1. Explain the concepts of laminar and turbulent
	theory and compute the drag and lift forces	boundary layers (L2)

GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING (Autonomous)

Approved by AICTE, New Delhi and Affiliated to JNTU-Kakinada

Re-accredited by NAAC with "A" Grade with a CGPA of 3.47/4.00 Madhurawada, Visakhapatnam - 530 048.

	2. Explain the concepts of boundary layer	l
	separation (L2)	l
	3. Compute the Drag and lift forces on objects	l
	presentation flowing fluid medium (L3)	l

PROGRAMME OUTCOMES (POs)

- 1. Graduates will be able to apply the knowledge of mathematics, science, engineering fundamentals to solve complex civil engineering problems.
- 2. Graduates will attain the capability to identify, formulate and analyse problems related to civil engineering and substantiate the conclusions
- Graduates will be in a position to design solutions for civil engineering problems and design system
 components and processes that meet the specified needs with appropriate consideration to public health
 and safety.
- 4. Graduates will be able to perform analysis and interpretation of data by using research methods such as design of experiments to synthesize the information and to provide valid conclusions.
- 5. Graduates will be able to select and apply appropriate techniques from the available resources and modern civil engineering and software tools, and will be able to predict and model complex engineering activities with an understanding of the practical limitations.
- 6. Graduates will be able to carry out their professional practice in civil engineering by appropriately considering and weighing the issues related to society and culture and the consequent responsibilities.
- 7. Graduates will be able to understand the impact of the professional engineering solutions on environmental safety and legal issues.
- 8. Graduates will transform into responsible citizens by resorting to professional ethics and norms of the engineering practice.
- 9. Graduates will be able to function effectively in individual capacity as well as a member in diverse teams and in multidisciplinary streams.
- 10. Graduates will be able to communicate fluently on complex engineering activities with the engineering community and society, and will be able to prepare reports and make presentations effectively.
- 11. Graduates will be able to demonstrate knowledge and understanding of the engineering and management principles and apply the same while managing projects in multidisciplinary environments.
- 12. Graduates will engage themselves in independent and life-long learning in the broadest context of technological change while continuing professional practice in their specialized areas of civil engineering.

GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING (Autonomous)

Re-accredited by NAAC with "A" Grade with a CGPA of 3.47/4.00 Madhurawada, Visakhapatnam - 530 048.

PROGRAMME SPECIFIC OUTCOMES(PSOs):

- 1. Collect, process and analyse the data from topographic surveys, remote sensing, hydrogeological investigations, geotechnical explorations, and integrate the data for planning of civil engineering infrastructure.
- 2. Analyse and design of substructures and superstructure for buildings, bridges, irrigation structures and pavements.
- 3. Estimate, cost evaluation, execution and management of civil engineering projects.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3	1	3	-	1	1	-	ı	-	ı	1
CO-2	2	3	2	2	2	-	ı	-	1	-	ı	1
CO-3	3	2	2	3	2	1	1	-	-	-	-	1
CO-4	2	2	1	1	1	-	-	-	-	-	-	1
CO-5	2	2	2	2	-	-	-	-	-	-	-	1

Course Outcome Vs Programme Specific Outcomes:

CO	PSO1	PSO2	PSO3
CO1	1	1	ı
CO2	1	1	ı
CO3	1	1	ı
CO4	1	1	-
CO5	ı	1	1

Mapping Levels:

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), put -: No Correlation

Assessment Methods:	Assignment / Seminar / Mid-Test / End Exam
---------------------	--

Teaching-Learning and Evaluation:

Week	TOPIC / CONTENTS	СО	Sample questions	Teaching- learning strategy	Assessment Method & Schedule
1	UNIT-I-INTRODUCTION: Dimensions and units – Physical properties of fluids specific gravity, viscosity, surface tension, vapor pressure and their influences on fluid motion pressure at a point,	CO-1	Discuss various physical properties of fluids.	Lecture/Discussion	A
2	Pascal's law, Hydrostatic law - atmospheric, gauge and vacuum pressure- measurement of pressure. Pressure gauges, Manometers: differential and Micro Manometers.	CO-1	Define Hydrostatic law. Explain various types of pressure gauges and manometers.	Lecture Lecture Problem solving	Assignment/ Quiz

GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING (Autonomous) Approved by AICTE, New Delhi and Affiliated to JNTU-Kakinada

Re-accredited by NAAC with "A" Grade with a CGPA of 3.47/4.00 Madhurawada, Visakhapatnam - 530 048.

3	UNIT-II-HYDROSTATIC	CO-2	Determine the	Lecture]
	FORCES : Hydrostatic forces on		hydrostatic forces on	Problem solving	
	submerged plane, Horizontal,		submerged planes.		
	Vertical surfaces				
4	Hydrostatic forces on inclined and	CO-2	Determine the	Lecture	1
	curved surfaces.		hydrostatic forces on	Problem solving	
	Center of pressure.		inclined and curved		
	Derivations and problems.		surfaces.		
5	FLUID KINEMATICS:	CO-2	Write about	Lecture	
	Lagrangean and Eularian		classification of flows.		
	approaches- Description of fluid				
	flow, Stream line, path line and		Define streamline, streak	Lecture	
	streak lines and stream tube.		line, path line.	Problem solving	
	Classification of flows : Steady,				
	unsteady, uniform, nonuniform,				
	laminar, turbulent, rotational and				
	irrotational flows				
6	Equation of continuity for one, two,	CO-2	Write the	Lecture	
	three dimensional flows – stream		continuity	Problem solving	
	and velocity potential functions,		equation for		
	flownet.		three		
			dimensional		
			flow.		
7	UNIT-III-FLUID DYNAMICS:	CO-3	Write the Bernoulli's	Lecture	
	Surface and body forces, Concepts		equations for flow	Problem solving	
	of fluid system and control volume		along a stream line for		
	– Euler's and Bernoulli's equations		3-D flow		
	for flow for 3-D flow				
8	Momentum equation and its	CO-3	Discuss	Lecture	
	application – forces on pipe bend.		momemtum		
			equation and its		
			applications.		
9			MID TEST - I	-	•
10	MEASUREMENT OF FLOW:	CO-3	Deduce the expression	Lecture	
- 0	Pitot tube, Venturi meter and orifice		for discharge of Orifice	Problem solving	
	meter		meter.		
			Deduce the expression		Assignment/
			for discharge of Orifice		Quiz
			meter.		
11	classification of orifices, flow over	CO-3	Discuss the flow	Lecture	1
. –	rectangular, triangular and	-	through different	Problem solving	
	trapezoidal notches.		notches.		
12	UNIT-IV-VISCOUS FLOW:	CO-4	Discuss the	Lecture	1
14	Reynold's experiment –	CO-4	Characteristics of	Lecture	
	Classification of Laminar and		Laminar & Turbulent		
	Turbulent flows, hydrodynamically		flows.		
	smooth and rough pipes.		IIOWS.		
	smoon und rough pipes.			I	_

GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING (Autonomous) Approved by AICTE, New Delhi and Affiliated to JNTU-Kakinada

Re-accredited by NAAC with "A" Grade with a CGPA of 3.47/4.00 Madhurawada, Visakhapatnam - 530 048.

10	I/O ICHOMOUS	ilulawada, visar	11apatilaiii - 550 048.	· ·		
13	Flow between parallel plates, Flow		Explain the Flow	Lecture		
	through long pipes.	CO-4	between parallel plates.	Problem solving		
			Explain the flow			
			through inclined			
			tubes.			
14	CLOSED CONDUIT FLOW:	CO-4	Discuss various minor	Lecture		
	Laws of		losses in pipes	Problem solving		
	Fluid friction – Darcy's equation,		Explain the Laws of Fluid			
	Minor losses – pipes in series –		Friction			
	pipes in parallel					
15	Total energy line and hydraulic	CO-4	Draw the sketch	Lecture		
	gradient line. variation of friction		showing Total energy	Problem solving		
	factor with		line and hydraulic			
	Reynold's number – Moody's		gradient line and also			
	Chart.		define the terms.			
16	UNIT-V-BOUNDARY LAYER	CO-5	Define Boundary layer	Lecture/Discussion		
	THEORY – concepts, Prandtl		and Characteristics of			
	contribution, Characteristics of		boundary layer along a			
	boundary layer along a thin flat		thin flat plate.			
	plate, laminar and turbulent		Partie			
	boundary layers (no deviations)					
17	BL in transition, separation of BL,	CO-5	Write about separation	Lecture		
	control of BL, flow around		of Boundary Layer.			
	submerged objects Drag and Lift-					
	Magnus effect.		Discuss Drag and	Lecture		
			Lift Effect	Problem solving		
			2.110 2.11000	1 Toolem solving		
18		N	AID TEST - II	I I		

END EXAM