INSTRUMENTAL METHODS FOR CHEMICAL ANALYSIS

Course Code: 13CH1145

Course Educational Objectives:
To make the student understand the advanced instrumentation available for chemical analysis.

Course Outcomes:
After studying this course the student would be able to choose the instrument needed for analysis.

UNIT-I (12 Lectures)
AN INTRODUCTION TO INSTRUMENTAL METHODS:
Terms Associated With Chemical Analysis, Classification Of Instrumental Techniques, A Review Of The Important Considerations In Analytical Methods, Basic Functions of Instrumentation, Important Considerations in Evaluating an Instrumental Method.

MEASUREMENTS, SIGNALS AND DATA:

UNIT-II (12 Lectures)
AN INTRODUCTION TO ABSORPTION AND EMISSION SPECTROSCOPY:
ULTRAVIOLET AND VISIBLE SPECTROMETRY-INSTRUMENTATION:
Radiation Sources, Wave Length Selection, Cells and Sampling Devices,
Detectors, Instruments for Absorption Photometry.

ULTRAVIOLET AND VISIBLE ABSORPTION METHODS:
Fundamental Laws of Photometry, Spectrophotometric Accuracy,
Photometric Precision, Quantitative Methodology, Differential or
Expanded-Scale Spectroscopy.

UNIT-III (12 Lectures)
FLAME EMISSION AND ATOMIC ABSORPTION SPECTROSCOPY:
Introduction, Instrumentation for Flame Spectrometric Methods, Flame
Emission Spectrometry, Atomic Absorption Spectrometry, Interference
Associated with Flame and Furnaces, Applications, Comparison of FES
and AAS.

INFRARED SPECTROMETRY:
Correlation of Infrared Spectra with Molecular Structure, Instrumentation,
Sample Handling.

UNIT-IV (12 Lectures)
MASS SPECTROMETRY:
Sample Flow in a Mass Spectrometer, Inlet Sample System, Ionization
Methods in Mass Spectrometry, Mass Analyzers, Ion-Collection System,
Vacuum System, Isotope- Ratio Spectrometry, Correlation of Mass Spectra
With Molecular Structure.

GAS CHROMATOGRAPHY:
Gas Chromatographs, Derivative Formation, Gas Chromatographic
Columns, Liquid Phases and Column Selection, Detectors for Gas
Chromatography.

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY:
HPLC Instrumentation, Mobile-Phase Delivery System, Sample
Introduction, Separation Columns, Detectors.

X RAY DIFFRACTION:
General Principles, Braggs equation, Laue photographic method, Rotating
crystal method, Oscillating crystal method, Powder method, Interpretation of the Diffraction pattern, Applications of XRD.

UNIT-V

CHROMATOGRAPHY: GENERAL PRINCIPLES:
Classification of Chromatographic Methods, Chromatographic Behaviour of Solutes, Column Efficiency and Resolution, Column Processes and Band Broadening, Time of Analysis and Resolution, Quantitative Determinations.

TEXT BOOK:

REFERENCES: