Course Code: 13EC1132
L T P C
4 0 0 3

Pre requisites: Switching Theory and Logic Design.

Course Educational Objectives:
To learn the concepts of modeling a digital system using Verilog hardware description Language.

Course Outcomes:

- Students can model digital circuits using Verilog.
- Student can represent Function of any digital system using hardware description language

UNIT-I (10 Lectures)
INTRODUCTION TO VERILOG:
Verilog as HDL, Levels of Design Description, Concurrency, Simulation and Synthesis, Functional Verification, System Tasks, Programming Language Interface (PLI), Module, Simulation and Synthesis Tools, Test Benches.

LANGUAGE CONSTRUCTS AND CONVENTIONS:
Introduction, Keywords, Identifiers, White Space Characters, Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters, Memory, Operators, System Tasks.

UNIT-II (14 Lectures)
GATE LEVEL MODELING:
Introduction, AND Gate Primitive, Module Structure, Other Gate Primitives, Illustrative Examples, Tri-State Gates, Array of Instances of Primitives, Additional Examples, Design of Flipflops with Gate Primitives, Delays, Strengths and Contention Resolution, Net Types, Design of Basic Circuits.
DATA FLOW LEVEL MODELING:
Introduction, Continuous Assignment Structures, Delays and Continuous Assignments, Assignment to Vectors, Operators.

UNIT-III (14 Lectures)
BEHAVIORAL MODELING:
Introduction, Operations and Assignments, Functional Bifurcation, Initial Construct, Always Construct, Examples, Assignments with Delays, Wait construct, Multiple Always Blocks, Designs at Behavioral Level, Blocking and Non-blocking Assignments, The case statement, Simulation Flow, if and if-else constructs, assign-deassign construct, repeat construct, for loop, the disable construct, whileloop, forever loop, parallel blocks, force-release construct, Event.

SWITCH LEVEL MODELING:
Introduction, Basic Transistor Switches, CMOS Switch, Bi-directional Gates, Time Delays with Switch Primitives, Instantiations with Strengths and Delays, Strength Contention with Tri-reg Nets.

UNIT-IV (12 Lectures)
FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES:
Introduction, Function, Tasks, User-Defined Primitives (UDP), FSM Design (Moore and Mealy Machines).

SYSTEM TASKS, FUNCTIONS AND COMPILER DIRECTIVES:
Introduction, Parameters, Path Delays, Module Parameters, System Tasks and Functions, File-Based Tasks and Functions, Compiler Directives, Hierarchical Access, General Observations.

VERILOG MODELS FOR MEMORIES AND BUSINES:
Static RAM Memory, A simplified 486 Bus Model, UART Design.

UNIT-V (10 Lectures)
DESIGNING WITH FIELD PROGRAMMABLE GATE ARRAYS AND COMPLEX PROGRAMMABLE LOGIC DEVICES:
Xilinx 3000 Series FPGAs, Designing with FPGAs, Using a One-Hot State Assignment, Altera Complex Programmable Logic Devices (CPLDs), Altera FLEX 10K Series CPLDs.
TEXT BOOKS:

REFERENCES: