## **COMPUTATIONAL FLUID DYNAMICS**

| Course | code: | 13CH1140 | L | Т | Р | С |
|--------|-------|----------|---|---|---|---|
|        |       |          | 4 | 0 | 0 | 3 |

## **Course Educational Objectives:**

This course introduces the student

- The basics of computational fluid dynamics (CFD).
- What equations govern CFD.
- How these equations are solved.

### **Course Outcomes:**

After completion of the course the student

- Will be able to set up the governing equation for any CFD problem.
- Use the correct discretisation method to solve these governing equations.

## **UNIT-I**

(166)

### (12 Lectures)

**Introduction to differencing schemes:** Basics of Finite difference methods, finite element method and finite volume method. CFD Applications.

Final Governing differential equations of CFD and boundary conditions in Cartesian, cylindrical and spherical co-ordinate systems.

## **UNIT-II**

### (12 Lectures)

### **Finite difference methods for diffusion problems(Theory)**:

Explicit Method and its Stability criteria, Implicit Method, Crank Nicholson method, Use of one Sided FDM to handle boundary conditions.

# Finite difference methods for steady state convection- diffusion problems (Theory):

Use and importance of Upwinding difference method.

## 2013

# (12 Lectures)

167

Finite Volume method for steady sate diffusion (Theory):

One dimensional and two dimensional problems.

## FINITE VOLUME METHOD FOR STEADY STATE CONVECTION-**DIFFUSION PROBLEMS (THEORY):**

One dimensional and two dimensional problems. Use and importance of Upwinding difference method, Hybrid method and Power Law method.

## **UNIT-IV**

**UNIT-III** 

## **CASE STUDY-1:**

Using FDM and FVM for solving steady and un-steady state one dimensional diffusive problem.

## **UNIT-V**

## **CASE STUDY-2:**

Using FDM and FVM for solving one and two dimensional convection and diffusion problem.

## **TEXT BOOKS:**

- 1. Versteeg. H.K., and Malalasekera W, "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", Longman, 1998.
- Patankar. S.V., "Numerical Heat Transfer and Fluid Flow", 2. Taylor and Francis, 1980.

## **REFERENCE:**

Muralidhar.K and Sundararajan T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi 1995.





(12 Lectures)

(12 Lectures)