SCHEME OF COURSE WORK

Course Details:

Course Title	Calculus and Linear Algebra							
Course Code	19BM1101 L T P C 3 1 0 4							
Program	B.Tech							
Specialization	Electrical and Electronics Engineering							
Semester	I Semester							
Prerequisites	 Basic formulae of differentiation, product rule, and quotient rule. Basic Integration formulae, integration by parts, definite integrals and properties solve a linear system of equations analytically and compute eigen values and eigen vectors of a square matrix 							
Courses to which it is a prerequisite	For all Engineering Courses							

PROGRAM OUTCOMES:

- 1. A graduate of **Electrical and Electronics Engineering**will be able to apply the knowledge of mathematics, science, engineering fundamentals to solve complex **Electrical and Electronics Engineering** problems.
- 2. A graduate of **Electrical and Electronics Engineering** will be attaining the capability to identify, formulate and analyse problems related to **Electrical and Electronics Engineering**.
- 3. A graduate of **Electrical and Electronics Engineering** will be in a position to design solutions for system components and processes that meet the specified needs with appropriate consideration for public health and safety.
- 4. A graduate of **Electrical and Electronics Engineering** will be able to conduct experiments, perform analysis and interpretation of data by using research methods such as design of experiments to synthesize the information and to provide valid conclusions.
- 5. A graduate of **Electrical and Electronics Engineering** will be able to select and apply appropriate techniques from the available resources.
- 6. A graduate of **Electrical and Electronics Engineering** will be able to carry out their professional practice in **Electrical and Electronics Engineering** by appropriately considering and weighing the issues related to society.
- 7. A graduate of **Electrical and Electronics Engineering** will be able to understand the impact of the professional engineering solutions on environmental safety and legal issues.
- 8. A graduate of **Electrical and Electronics Engineering** will be transform into responsible citizens by resorting to professional ethics and norms of the engineering practice.
- 9. A graduate of **Electrical and Electronics Engineering** will be able to function effectively in individual capacity as well as a member in diverse teams and in multidisciplinary streams.
- 10. A graduate of **Electrical and Electronics Engineering** will be able to communicate fluently with the engineering community and society, and will be able to prepare reports and make presentations effectively.
- 11. A graduate of **Electrical and Electronics Engineering** will be able to apply knowledge of the engineering and management principles to managing projects and finance in multidisciplinary environments.
- 12. A graduate of **Electrical and Electronics Engineering** will be engage themselves in independent and lifelong learning to continuing professional practice in their specialized areas of **Electrical and Electronics Engineering**

Course Outcomes (COs):

- CO 1 Test the convergence of an infinite series and express a function in terms of power series.
- CO 2 Apply the techniques of multivariable differential calculus to determine extrema and series expansions of a function of several variables.
- CO 3 Extend the concept of integration to higher dimensions and use it to solve problems in engineering.
- CO 4 Solve a linear system of equations analytically and compute eigenvalues and eigen vectors of a square matrix
- CO 5 Diagonalize a matrix and identify the nature of a quadratic form.

Course Outcome versus Program Outcomes:

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO-1	S	S										
CO-2	S	М										
CO-3	S	S										
CO-4	S	S										
CO-5	S	S										

S - Strongly correlated, *M* - *Moderately* correlated, *Blank* - *No* correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Cour se Outc omes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Sequence, infinite series tests for convergence: comparison test, ratio Test, root test.	CO-1	Test for the converge the series $\sum_{n=1}^{\infty} \left(\frac{n! 3^n}{n^n} \right)$	Lecture / Problem solving	Assignment (Week 2 - 4) / Quiz-I (Week -8)/ Mid-Test 1 (Week 9)
2	Rolle's theorem, Lagrange's and Cauchy's mean value theorem	CO-1	Verify Lagrange's Mean Value theorem for f(x) = (x-1)(x-2)(x-3) in [0,4]	Lecture / Problem solving	Assignment (Week 2 - 4)/ Quiz -I (Week -8)/ Mid-Test 1 (Week 9)
3	Expansions of functions: Taylor's and Maclaurin's series	CO-1	Expand $\sin^{-1} x$ in powers of x and y up to third degree	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Assignment (Week 2 - 4)/ Quiz -1 (Week -8)
4	Total derivative, change of variables, Jacobin's	CO-2	If $x = u(1 - v)$, $y = uv$, then find $\frac{\partial(u,v)}{\partial(x,y)}$	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
5	Taylor's theorem for functions of two variables	CO-2	Find the Taylor's series expansion of $e^x \sin y$ in powers of x and y	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
6	Maxima and minima of functions of two variables, Lagrange method of undetermined multipliers	CO-2	In the plane triangle ABC, find the maximum value of cos <i>A</i> cos <i>B</i> cos <i>C</i>	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
7	Non Cartesian Coordinates, Double integrals, Change of order of integration.	CO-3	Evaluate $\int_{-1}^{2} \int_{x^2}^{x+2} dy dx$.	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)

8			Mid-Test 1		
9	Double integral in polar co-ordinates Triple integrals, Change of variables in double integral.	CO-3	Evaluate $\int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12-14)
10	Double integral in polar co-ordinates Triple integrals, Change of variables in double integral.	CO-3	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12-14)
11	Change of variables in triple integral, Simple Applications of multiple integrals.	CO-3	Evaluate $\int_{x=0}^{1} \int_{y=0}^{x} \int_{z=0}^{x+y} x dz dy dx.$	Lecture / Problem solving	Assignment (Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12-14)
12	Rank of a matrix (echelon form and normal form	CO-4	Determine the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12-14)
13	Consistency of linear system of equations	CO-4	Consistency of linear system of equations 4x-2y+6z=8, x+y-3z=-1, 15x-3y+9z=21	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
14	Eigen values and eigen vectors of a matrix, properties of eigen values	CO-4	Find the eigen values and eigen vectors for the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$, Two eigen values of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ are equal to 1 each.Find the eigen value of A^{-1}	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
15	Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem	CO-5	Using Cayley – Hamilton theorem find the inverse of $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ 2 & -4 & -4 \end{bmatrix}$, find A^4	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
16	Reduction to diagonal form,	CO-5	Reduce the matrix	Lecture / Problem	Mid-Test 2 (Week 18) /

			$A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ to the diagonal form	solving	Quiz -II (Week -17)
17	Reduction of quadratic form to canonical form, nature of the quadratic form	CO-5	Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ To the canonical form and discuss it's nature	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
18	Mid-Test 2				
19/20	END EXAM				