SCHEME OF COURSE WORK

Course Details:						
Course Title	Mathematics-I					
Course Code	15BM1101	L T P C 3003				
Program:	B.Tech.					
Specialization:	INFORMATION TECHNOLOGY					
Semester	I Semester					
Prerequisites	Basic formulae of differentiation, product rule, and quotient rule.					
	Basic Integration formulae, integration by parts, definite integrals and properties Basic concept of partial differentiation					

Courses to which it is a prerequisite : For all Engineering Courses

PROGRAM OUTCOMES:

A graduate of Information Technology Engineering will be able to

- PO1: Apply the knowledge of mathematics, science, engineering fundamentals and principles of Information Technology to solve problems in different domains.
- PO2: Analyze a problem, identify and formulate the computing requirements appropriate to its solution.
- PO3: Design and develop software components, patterns, processes, Frameworks and applications that meet specifications within the realistic constraints including societal, legal and economic to serve the needs of the society
- PO4: Design and conduct experiments, as well as analyze and interpret data
- PO5: Use appropriate techniques and tools to solve engineering problems.
- PO6: Understand the impact of Information technology on environment and the evolution and importance of green computing.
- PO7: Analyze the local and global impact of computing on individual as well as on society and incorporate the results in to engineering practice.
- PO8: Demonstrate professional ethical practices and social responsibilities in global and societal contexts.
- PO9: Function effectively as an individual, and as a member or leader in diverse and multidisciplinary teams.
- PO10: Communicate effectively with the engineering community and with society at large.
- PO11: Understand engineering and management principles and apply these to one's own work, as a member and Leader in a team, to manage projects.
- PO12: Recognize the need for updating the knowledge in the chosen field and imbibing learning to learn skills.

Course Outcomes (COs):

1	Develop the ability to solve linear differential equations of first and higher order and
	use the knowledge gain to certain engineering problems.
2	Appraise the Laplace transform technique and use it to solve various engineering
	problems.
3	Apply the techniques of multivariable differential calculus to determine extrema and
	series expansions etc. of functions of several variables.
4	Extend the concept of integration to two and three dimensions and support it through
	applications in engineering mechanics.
5	Generalize calculus to vector functions and interpret vector integral theorems.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S										
CO-2	S	М										
CO-3	S	S										
CO-4	S	S										
CO-5	S	S										

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Cour se Outc	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Linear differential equations of second higher order with constant coefficients.	omes CO-1	1. solve $(+2) =$ 2. Solve $(D^2 - D) = 2 = 2 + 1 + 2 =$	Lecture / Problem solving	Assignment (Week 2 - 4) / Quiz-I
2	Method of Variation of parameters	CO-1	D^2 for D^2 for D^2 for D^2 for D^2 for D^2 for D^2 by D^2 for D^2 by D^2 for D^2 for D^2 for D^2 for D^2 for D^2 for D^2 fo	Lecture /	(Week -8)/ Mid- Test 1 (Week 9) Assignment
			D^2 y x		

	Cauchy's Linear Differential Equations		method of parameters	Problem solving	(Week 2 - 4)/ Quiz -I (Week -8)/ Mid- Test 1 (Week 9)
3	Orthogonal trajectories, Newton's law of cooling, Models on R-L-C circuits.	CO-1	Show that the family of confocal and coaxial parabolas $\mathcal{Y}^{\mathbb{Z}} = 4$ ($\mathfrak{k} + \mathfrak{k}$) where is an arbitrary constant are self orthogonal.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Assignment (Week 2 - 4)/ Quiz -I (Week -8)
4	Laplace transform of elementary functions, Properties of Laplace transform, Transforms of Periodic function, Transforms of derivatives and integrals, Multiplication by t^{n} , division by t	CO-2	Find the Laplace transform of $f(t) = \frac{e^{-t}s}{t}$	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
5	Evaluation of integrals by Laplace transforms, Elementary Inverse transforms, Inverse transform of Derivatives and Integrals.	CO-2	Find the inverse Laplace transform of the following function $\frac{s+2}{s^2(s^2-s-2)}$	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
6	Convolution theorem, Unit step function, second shifting theorem	CO-2	Using convolution theorem, evaluate $L^{-1}\left\{\frac{5}{(s^2+a^2)^2}\right\}$	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
7	Unit impulse function, Application of	- CO-2		Lecture /	Mid-Test 1
	Laplace transforms to ordinary differential equations (initial and boundary value problems)		Solve $(D^2 + 4D + 3) y = e^{-t}$ given that $y(0) = y(0) =$ 1 a t = 0 by using Laplace transform.	Problem solving	(Week 9) / Quiz -I (Week -8)
8	Total derivative, change of variables Jocobians	CO-3	If = $(1 -)$, = , x u p y $uthen find (1 -), (1 $	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
9	Mid-Test 1				
10	Taylor's theorem for functions of two	CO-3	Find the Taylor's series	Lecture /	Mid-Test 2
	variables		expansion of $e^x \sin y$ in powers of x and y	Problem solving	(Week 18) / Quiz -II (Week -17)/ Assignment (12- 14)
11	Maxima and minima of functions of two	CO-3	In the plane triangle ABC, find	Lecture /	Assignment
	variables, Lagrange method of undetermined multipliers		the maximum value of cos Acos B cos C	Problem solving	(Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12-

					14)
12	Non Cartesian Coordinates, Double integrals, Change of order of integration.	CO-3	Evaluate $\int_{-1}^{2} \int_{x^2}^{x+2} d d$.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12- 14)
13	Double integral in polar co-ordinates Triple integrals, Change of variables in double integral.	CO-3	Evaluate $\int_{C} \int_{C} e^{-(x^2 + y^2)} d$ by changing to polar coordinates.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
14	Change of variables in triple integral, Simple Applications of multiple integrals : Area enclosed by a plane curves.	CO-3	Evaluate $\int_{x=0}^{1} \int_{y=0}^{x} \int_{z=0}^{x+y} x d$	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz -II (Week -17)
15	Differentiation of vectors, Scalar and vector point functions	CO-4	Find angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 - = 3$ at	Lecture / Problem solving	Mid-Test 2 (Week 18) /
	Gradient of a scalar function, properties, Directional derivative, Divergence of a vector point function and it's physical interpretation, Curl of a vector point function, properties, Physical interpretation of Divergence and Curl of a vector point function, Del applied twice to point functions		and $x^2 + y^2 - z = 3$ at (2, -1,2).		Quiz -II (Week -17)
16	Line integral, circulation, work done, surface and volume integrals	CO-5	Evaluate $e^{2x-3y}d$ over the triangle bounded	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II
17	Green's theorem in the plane, Stoke's theorem, Gauss Divergence theorem	CO-5	by $x = 0$, $y = 0$ + = 1 Verify Divergence theorem for $\overline{F} = 4 x i \frac{y}{2} 2 y \frac{x}{4} + \frac{y}{2} \frac{z}{4} \frac{x}{4}$ taken	Lecture / Problem solving	(Week -17) Mid-Test 2 (Week 18) /
	and related problems		over the region bounded by the cylinder $\mathbf{x}^{\mathbb{Z}} + \mathbf{y}^{\mathbb{Z}} = 4$, $\mathbf{z} = 0$ \mathbf{u} $\mathbf{z} = 3$.		Quiz -II (Week -17)
18	Mid-Test 2				
19/20	END EXAM				