SCHEME OF COURSE WORK

PROGRAM OUTCOMES:

A graduate of Information Technology Engineering will be able to
PO1: Apply the knowledge of mathematics, science, engineering fundamentals and principles of Information Technology to solve problems in different domains.

PO2: Analyze a problem, identify and formulate the computing requirements appropriate to its solution.
PO3: Design and develop software components, patterns, processes, Frameworks and applications that meet specifications within the realistic constraints including societal, legal and economic to serve the needs of the society

PO4: Design and conduct experiments, as well as analyze and interpret data
PO5: Use appropriate techniques and tools to solve engineering problems.
PO6: Understand the impact of Information technology on environment and the evolution and importance of green computing.

PO7: Analyze the local and global impact of computing on individual as well as on society and incorporate the results in to engineering practice.

PO8: Demonstrate professional ethical practices and social responsibilities in global and societal contexts.
PO9: Function effectively as an individual, and as a member or leader in diverse and multidisciplinary teams.
PO10: Communicate effectively with the engineering community and with society at large.
PO11: Understand engineering and management principles and apply these to one's own work, as a member and Leader in a team, to manage projects.
PO12: Recognize the need for updating the knowledge in the chosen field and imbibing learning to learn skills.

Course Outcomes (COs):

1	Develop the ability to solve linear differential equations of first and higher order and use the knowledge gain to certain engineering problems.
2	Appraise the Laplace transform technique and use it to solve various engineering problems.
3	Apply the techniques of multivariable differential calculus to determine extrema and series expansions etc. of functions of several variables.
4	Extend the concept of integration to two and three dimensions and support it through applications in engineering mechanics.
5	Generalize calculus to vector functions and interpret vector integral theorems.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S										
CO-2	S	M										
CO-3	S	S										
CO-4	S	S										
CO-5	S	S										

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: \quad Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS		Sample questions	TEACHINGLEARNING STRATEGY	Assessment Method \& Schedule
1	Linear differential equations of second higher order with constant coefficients.	$\begin{aligned} & \hline \text { omes } \\ & \text { CO-1 } \end{aligned}$	$\begin{aligned} & \text { 1. solve }(+2)= \\ & \text { 2. Solve }\left(D^{3}-(i) y=y e^{x}+1+2 x\right. \end{aligned}$	Lecture / Problem solving	Assignment (Week 2-4) / Quiz-I
2	Method of Variation of parameters	C0-1	Solve (+ 1) = sec by	Lecture /	(Week -8)/ MidTest 1 (Week 9) Assignment
			$\nu^{2} \quad y \quad x$		

	Cauchy's Linear Differential Equations		method of parameters	Problem solving	(Week 2-4)/ Quiz -I (Week -8)/ Mid- Test 1 (Week 9)
3	Orthogonal trajectories, Newton's law of cooling, Models on R-L-C circuits.	CO-1	Show that the family of confocal and coaxial parabolas $y^{2}=4(\boldsymbol{*})$ where is an arbitrary constanter are self orthogonal.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Assignment (Week 2-4)/ Quiz -I (Week -8)
4	Laplace transform of elementary functions, Properties of Laplace transform, Transforms of Periodic function, Transforms of derivatives and integrals, Multiplication by $t^{\text {II }}$, division by t .	CO-2	Find the Laplace transform of $f(c)=\frac{u^{-r}{ }^{-r} \text { e }}{1}$	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
5	Evaluation of integrals by Laplace transforms, Elementary Inverse transforms, Inverse transform of Derivatives and Integrals.	CO-2	Find the inverse Laplace transform of the following function $\frac{s+2}{s^{2}\left(s^{2}-s-2\right)}$	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
6	Convolution theorem, Unit step function, second shifting theorem	CO-2	Using convolution theorem, evaluate $L^{-1}\left\{\frac{b}{\left(s^{2}+a^{2}\right)^{2}}\right\}$	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
7	Unit impulse function, Applieation of Laplace transforms to ordinary differential equations (initial and boundary value problems)	$\mathrm{CO}-2$	Solve $\left(\nu^{2}+4 \nu+3\right) y=e^{-\tau}$ given that $y(0)=y^{\prime}(0)=$ 1 a $\mathrm{t}=0$ by using Laplace transform.	Leeture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
8	Total derivative, change of variables	CO-3	If $=(1-),=$	Lecture /	Mid-Test 1
9	Jocobians Mid-Test 1	-	then find $\frac{d, y y}{d y}$	Problem solving	(Week 9) / Quiz -I (Week -8) \qquad
10	Taylor's theorem for functions of two	CO-3	Find the Taylor's series	Lecture /	Mid-Test 2
11	variables Maxima and minima of functions of two	CO-3	expansion of $e^{x} \sin y$ in powers of κ and ξ In the plane triangle $A B C$, find	Problem solving Lecture /	(Week 18)/ Quiz -II (Week -17)/ Assignment (12- 14) Assignment
	variables, Lagrange method of undetermined multipliers		the maximum value of $\cos A \cos H \cos C$	Problem solving	$\begin{array}{\|l} \hline \text { (Mid-Test 2 } \\ \text { (Week 18) / } \\ \text { Quiz -II } \\ \text { (Week -17)/ } \\ \text { Assignment (12- } \end{array}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& \& 14) \\
\hline 12 \& Non Cartesian Coordinates, Double integrals, Change of order of integration. \& CO-3 \& Evaluate \(\int_{-1}^{2} \int_{x^{2}}^{x+2} d d\). \& Lecture / Problem solving \& \begin{tabular}{l}
Mid-Test 2 \\
(Week 18) / \\
Quiz -II \\
(Week -17)/ \\
Assignment (12- \\
14)
\end{tabular} \\
\hline 13

14 \& | Double integral in polar co-ordinates Triple integrals, Change of variables in double integral. |
| :--- |
| Change of variables in triple integral, Simple | \& \[

\mathrm{CO}-3
\]

CO-3 \& \begin{tabular}{l}
Evaluate

$\int_{6}^{\infty} \int_{¢}^{\infty} \mathrm{e}^{-\left(x^{2}+y^{2}\right)} \mathrm{d} \quad$ by changing to polar coordinates.

Evaluate

 \&

Lecture / Problem solving

Lecture /

 \&

Mid-Test 2

(Week 18) /

Quiz -II

(Week-17)

Mid-Test 2
\end{tabular}

\hline 15 \& | Applications of multiple integrals : Area enclosed by a plane curves. |
| :--- |
| Differentiation of vectors, Scalar and vector point functions | \& CO-4 \& | $\int_{x=0}^{1} \int_{y=0}^{b} \int_{z=0}^{x+y} x d$ |
| :--- |
| Find angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ | \& | Problem solving |
| :--- |
| Lecture / |
| Problem solving | \& | (Week 18)/ |
| :--- |
| Quiz -II |
| (Week -17) |
| Mid-Test 2 |
| (Week 18) / |

\hline 16 \& Gradient of a scalar function, properties, Directional derivative, Divergence of a vector point function and it's physical interpretation, Curl of a vector point function, properties, Physical interpretation of Divergence and Curl of a vector point function, Del applied twice to point functions Line integral, circulation, work done, surface and volume integrals \& CO-5 \& | and $x^{2}+y^{2}-z=3$ at $(2,-1,2)$. |
| :--- |
| Evaluate ${ }_{x} e^{2 x-3 y} d$. | \& | Lecture / |
| :--- |
| Problem solving | \& | Quiz -II |
| :--- |
| (Week -17) |
| Mid-Test 2 |
| (Week 18) / |

\hline 17 \& Green's theorem in the plane, Stoke's theorem, Gauss Divergence theorem \& CO-5 \& | over the triangle bounded |
| :--- |
| by $x=0, y=0$ $+\quad=1$ |
| Verify Divergence theorem for $\bar{F}=4 x i \underline{t} 2 y j_{+} z_{z}^{2} k$ taken | \& | Lecture / |
| :--- |
| Problem solving | \& | Quiz -II |
| :--- |
| (Week -17) |
| Mid-Test 2 |
| (Week 18) / |

\hline \[
$$
\begin{aligned}
& 18 \\
& 19 / 20
\end{aligned}
$$

\] \& | and related problems |
| :--- |
| Mid-Test 2 |
| END EXAM | \& \& over the region bounded by the cylinder $x^{2}+y^{2}=4, z=$ $0 u \quad z=3$. \& \& \[

$$
\begin{aligned}
& \text { Quiz -II } \\
& \text { (Week -17) }
\end{aligned}
$$
\]

\hline \& \& \& \& \&

\hline \& \& \& \& \&

\hline
\end{tabular}

