SCHEME OF COURSE WORK

Course Details:

PROGRAM OUTCOMES:

The student of Electrical and Electronics Engineering at the end of the program will be able to:

1. PO-1: Apply the knowledge of basic sciences and electrical and electronics engineering fundamentals to solve the problems of power systems and drives.
2. PO-2: Analyze power systems that efficiently generate, transmit and distribute electrical power in the context of present Information and Communications Technology.
3. PO-3: Design and develop electrical machines and associated controls with due considerations to societal and environmental issues.
4. PO-4: Design and conduct experiments, analyze and interpret experimental data for performance analysis.
5. PO-5: Apply appropriate simulation tools for modeling and evaluation of electrical systems.
6. PO-6: Apply the electrical engineering knowledge to assess the health and safety issues and their consequences.
7. PO-7: Demonstrate electrical engineering principles for creating solutions for sustainable development.
8. PO-8: Develop a techno ethical personality that help to serve the people in general and Electrical and Electronics Engineering in particular.
9. PO-9: Develop leadership skills and work effectively in a team to achieve project objectives.
10. PO-10: Communicate effectively in both verbal and written form.
11. PO-11: Understand the principles of management and finance to manage project in multi disciplinary environments.
12. PO-12: Pursue life-long learning as a means of enhancing the knowledge and skills.

Course Outcomes (COs):

1	Develop the ability to solve linear differential equations of first and higher order and use the knowledge gain to certain engineering problems.
2	Appraise the Laplace transform technique and use it to solve various engineering problems.
3	Apply the techniques of multivariable differential calculus to determine extrema and series expansions etc. of functions of several variables.
4	Extend the concept of integration to two and three dimensions and support it through applications in engineering mechanics.
5	Generalize calculus to vector functions and interpret vector integral theorems.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S										
CO-2	S	M										
CO-3	S	S										
CO-4	S	S										
CO-5	S	S										

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: \quad Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Cour se Oute omes	Sample questions	TEACHINGLEARNING STRATEGY	Assessment Schedule
1	Linear differential equations of second higher order with constant coefficients.	CO-1	$\begin{aligned} & \text { 1. solve }\left(D^{2}+a^{2}\right) y=\operatorname{tanax} \\ & \text { 2. Solve }\left(D^{3}-D\right) y=e^{x}+1+2 x \end{aligned}$	Lecture / Problem solving	Assignment (Week 2-4) / Quiz-I (Week -8)/ Mid- Test 1 (Week 9)
2	Method of Variation of parameters Cauchy's Linear Differential Equations	CO-1	Solve $\left(D^{2}+1\right) y=\sec x$ by method of parameters	Lecture / Problem solving	Assignment (Week 2-4)/ Quiz -I (Week -8)/ Mid- Test 1 (Week 9)
3	Orthogonal trajectories, Newton's law of cooling, Models on R-L-C circuits.	CO-1	Show that the family of confocal and coaxial parabolas $y^{2}=4 a(x+a)$ where a is an arbitrary constant are self orthogonal.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Assignment (Week 2-4)/ Quiz -I (Week -8)
4	Laplace transform of elementary functions,	CO-2	Find the Laplace transform of	Lecture /	Mid-Test 1

$\left.\begin{array}{|l|l|l|l|l|l|}\hline & \begin{array}{l}\text { Properties of Laplace transform, Transforms } \\ \text { of Periodic function, Transforms of } \\ \text { derivatives and integrals, Multiplication by } \\ t^{n}, \text { division by } t\end{array} & & f(t)=\frac{e^{-t} \sin t}{t} & \text { Problem solving } & \begin{array}{l}\text { (Week 9)/ } \\ \text { Quiz -I } \\ \text { (Week -8) }\end{array} \\ \hline 5 & \begin{array}{l}\text { Evaluation of integrals by Laplace } \\ \text { transforms, Elementary Inverse transforms, } \\ \text { Inverse transform of Derivatives and } \\ \text { Integrals. }\end{array} & \mathbf{C O - 2} & \begin{array}{l}\text { Find the inverse Laplace } \\ \text { transform of the following } \\ \text { function } \frac{s+2}{s^{2}\left(s^{2}-s-2\right)}\end{array} & \begin{array}{l}\text { Lecture / } \\ \text { Problem solving }\end{array} & \begin{array}{l}\text { Mid-Test 1 } \\ \text { (Week 9) / } \\ \text { Quiz -I }\end{array} \\ \text { (Week -8) }\end{array}\right]$

	enclosed by a plane curves.		$\int_{x=0}^{1} \int_{y=0}^{x} \int_{z=0}^{x+y} x d z d y d x$	Problem solving	Quiz -II (Week -17)
15	Differentiation of vectors, Scalar and vector point functions Gradient of a scalar function, properties, Directional derivative, Divergence of a vector point function and it's physical interpretation, Curl of a vector point function, properties, Physical interpretation of Divergence and Curl of a vector point function, Del applied twice to point functions	CO-4	Find angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}-z=3$ at ($2,-1,2$).	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
16	Line integral, circulation, work done, surface and volume integrals	CO-5	Evaluate $\iint_{R} e^{2 x-3 y} d x d y$ over the triangle bounded by $x=0, y=0$ and $x+y=1$	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
17	Green's theorem in the plane, Stoke's theorem, Gauss Divergence theorem and related problems	CO-5	Verify Divergence theorem for $\bar{F}=4 x \boldsymbol{i}-2 y^{2} \boldsymbol{j}+z^{2} \boldsymbol{k}$ taken over the region bounded by the cylinder $x^{2}+y^{2}=4, z=$ 0 and $z=3$.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
18	Mid-Test 2				
19/20	END EXAM				

