SCHEME OF COURSE WORK

Course Details:

Course Title	Mathematics-I						
Course Code	13BM1101	Ι	L T P C 3003				
Program:	B.Tech.						
Specialization:	Electrical and Electron	ics Engineering					
Semester	I Semester						
Prerequisites	• Basic formulae of differentiation, product rule, and quotient rule.						
	• Basic Integration formulae, integration by parts, definite integrals						
	and properties						
	Basic concept of partial differentiation						
Courses to whic	Courses to which it is a prerequisite : For all Engineering Courses						

PROGRAM OUTCOMES:

The student of Electrical and Electronics Engineering at the end of the program will be able to:

- 1. PO-1: Apply the knowledge of basic sciences and electrical and electronics engineering fundamentals to solve the problems of power systems and drives.
- 2. PO-2: Analyze power systems that efficiently generate, transmit and distribute electrical power in the context of present Information and Communications Technology.
- 3. PO-3: Design and develop electrical machines and associated controls with due considerations to societal and environmental issues.
- 4. PO-4: Design and conduct experiments, analyze and interpret experimental data for performance analysis.
- 5. PO-5: Apply appropriate simulation tools for modeling and evaluation of electrical systems.
- 6. PO-6: Apply the electrical engineering knowledge to assess the health and safety issues and their consequences.
- 7. PO-7: Demonstrate electrical engineering principles for creating solutions for sustainable development.
- 8. PO-8: Develop a techno ethical personality that help to serve the people in general and Electrical and Electronics Engineering in particular.
- **9.** PO-9: Develop leadership skills and work effectively in a team to achieve project objectives.
- 10. PO-10: Communicate effectively in both verbal and written form.
- **11.** PO-11: Understand the principles of management and finance to manage project in multi disciplinary environments.
- **12.** PO-12: Pursue life-long learning as a means of enhancing the knowledge and skills.

Course Outcomes (COs):

1	Develop the ability to solve linear differential equations of first and higher order and
	use the knowledge gain to certain engineering problems.
2	Appraise the Laplace transform technique and use it to solve various engineering
	problems.
3	Apply the techniques of multivariable differential calculus to determine extrema and
	series expansions etc. of functions of several variables.
4	Extend the concept of integration to two and three dimensions and support it through
	applications in engineering mechanics.
5	Generalize calculus to vector functions and interpret vector integral theorems.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S										
CO-2	S	Μ										
CO-3	S	S										
CO-4	S	S										
CO-5	S	S										

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Cour se Outc omes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Linear differential equations of second higher order with constant coefficients.	CO-1	1. solve $(D^2 + a^2)y = tanax$ 2. Solve $(D^3 - D)y = e^x + 1 + 2x$	Lecture / Problem solving	Assignment (Week 2 - 4) / Quiz-I (Week -8)/ Mid- Test 1 (Week 9)
2	Method of Variation of parameters Cauchy's Linear Differential Equations	CO-1	Solve $(D^2 + 1)y = \sec x$ by method of parameters	Lecture / Problem solving	Assignment (Week 2 - 4)/ Quiz -I (Week -8)/ Mid- Test 1 (Week 9)
3	Orthogonal trajectories, Newton's law of cooling, Models on R-L-C circuits.	CO-1	Show that the family of confocal and coaxial parabolas $y^2 = 4a(x + a)$ where <i>a</i> is an arbitrary constant are self orthogonal.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Assignment (Week 2 - 4)/ Quiz -I (Week -8)
4	Laplace transform of elementary functions,	CO-2	Find the Laplace transform of	Lecture /	Mid-Test 1

	Properties of Laplace transform, Transforms of Periodic function, Transforms of derivatives and integrals, Multiplication by t^n , division by t		$f(t) = \frac{e^{-t}\sin t}{t}$	Problem solving	(Week 9)/ Quiz -I (Week -8)
5	Evaluation of integrals by Laplace transforms, Elementary Inverse transforms, Inverse transform of Derivatives and Integrals.	CO-2	Find the inverse Laplace transform of the following function $\frac{s+2}{s^2(s^2-s-2)}$	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
6	Convolution theorem, Unit step function, second shifting theorem	CO-2	Using convolution theorem, evaluate $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
7	Unit impulse function, Application of Laplace transforms to ordinary differential equations (initial and boundary value problems)	CO-2	Solve $(D^2 + 4D + 3)y = e^{-t}$ given that $y(0) = y'(0) =$ 1 at $t = 0$ by using Laplace transform.	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
8	Total derivative, change of variables Jocobians	CO-3	If $x = u(1 - v)$, $y = uv$, then find $\frac{\partial(u,v)}{\partial(x,y)}$	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
9	Mid-Test 1				
10	Taylor's theorem for functions of two variables	CO-3	Find the Taylor's series expansion of $e^x \sin y$ in powers of x and y	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12- 14)
11	Maxima and minima of functions of two variables, Lagrange method of undetermined multipliers	CO-3	In the plane triangle ABC, find the maximum value of $\cos A \cos B \cos C$	Lecture / Problem solving	Assignment (Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12- 14)
12	Non Cartesian Coordinates, Double integrals, Change of order of integration.	CO-3	Evaluate $\int_{-1}^{2} \int_{x^2}^{x+2} dy dx$.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12- 14)
13	Double integral in polar co-ordinates Triple integrals, Change of variables in double integral.	CO-3	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy \text{ by}$	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
			changing to polar coordinates.		

	enclosed by a plane curves.		$\int_{x=0}^{1} \int_{y=0}^{x} \int_{z=0}^{x+y} x dz dy dx.$	Problem solving	Quiz -II (Week -17)
15	Differentiation of vectors, Scalar and vector point functions Gradient of a scalar function, properties, Directional derivative, Divergence of a vector point function and it's physical interpretation, Curl of a vector point function, properties, Physical interpretation of Divergence and Curl of a vector point function, Del applied twice to point functions	CO-4	Find angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 - z = 3$ at (2, -1, 2).	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
16	Line integral, circulation, work done, surface and volume integrals	CO-5	Evaluate $\iint_{R} e^{2x-3y} dx dy$ over the triangle bounded by $x = 0$, $y = 0$ and $x + y = 1$	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
17	Green's theorem in the plane, Stoke's theorem, Gauss Divergence theorem and related problems	CO-5	Verify Divergence theorem for $\overline{F} = 4x\mathbf{i} - 2y^2\mathbf{j} + z^2\mathbf{k}$ taken over the region bounded by the cylinder $x^2 + y^2 = 4, z =$ 0 and $z = 3$.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
18	Mid-Test 2				
19/20	END EXAM				